
Safe Memory-Leak Fixing for C Programs
Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun Yang, Zhaoping Zhou, Bing Xie, Hong Mei

Key Laboratory of High Confidence Software Technologies (Peking University), MoE
Institute of Software, School of Electronics Engineering and Computer Science,

Peking University, Beijing, 100871, P. R. China
{gaoqing11, xiongyf04, miyq13, zhanglu, xiebing, meih}@sei.pku.edu.cn, {weikunyang, zhouzhaoping}@pku.edu.cn

Abstract—Automatic bug fixing has become a promising direc-
tion for reducing manual effort in debugging. However, general
approaches to automatic bug fixing may face some fundamental
difficulties. In this paper, we argue that automatic fixing of
specific types of bugs can be a useful complement.

This paper reports our first attempt towards automatically
fixing memory leaks in C programs. Our approach generates only
safe fixes, which are guaranteed not to interrupt normal execution
of the program. To design such an approach, we have to deal
with several challenging problems such as inter-procedural leaks,
global variables, loops, and leaks from multiple allocations. We
propose solutions to all the problems and integrate the solutions
into a coherent approach.

We implemented our inter-procedural memory leak fixing into
a tool named LeakFix and evaluated LeakFix on 15 programs
with 522k lines of code. Our evaluation shows that LeakFix is
able to successfully fix a substantial number of memory leaks,
and LeakFix is scalable for large applications.

I. INTRODUCTION

Recently, a lot of research effort has been put into automatic
bug fixing [1, 2, 3, 4, 5, 6]. Given a violated correctness
condition, these approaches try to modify the code to satis-
fy the condition. However, automatic bug fixing faces two
fundamental difficulties. First, the correctness condition is
often under-specified in practice. Current approaches usually
rely on test cases or assertions, both of which are usually
inadequate in the code, and rarely ensure correctness. Second,
the search space is often very large (even infinite), and it is
very difficult to find an efficient fixing algorithm in general.
Current approaches usually run in hours and may produce
undesirable fixes.

Due to these fundamental difficulties, we argue that instead
of general bug fixing, we should also study fixing approaches
for specific types of bugs. In this paper we report our attempt
of developing an approach that fixes a specific type of bugs
– memory leaks in C programs. There are several reasons to
choose memory leaks as our target problem. First, dealing with
memory leak is an important problem in software developmen-
t. While many approaches [7, 8, 9, 10, 11, 12, 13] have been
proposed to detect memory leaks, it is still difficult to fix a
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1 r e c o r d ∗ p ;
2 i n t b a d r e c o r d i d ;
3 whi le ( h a s n e x t ( ) ) {
4 i f ( s e a r c h c o n d i t i o n != n u l l )
5 p = g e t n e x t ( ) ;
6 e l s e
7 p = s e a r c h f o r n e x t ( s e a r c h c o n d i t i o n ) ;
8 i f ( i s b r o k e n ( p ) ) {
9 b a d r e c o r d i d =p−>i d ;

10 break ;
11 }
12 f r e e ( p ) ;
13 }
14 . . . / / o p e r a t i o n s on b a d r e c o r d i d
15 re turn ;

Fig. 1. The code of procedure check_records

memory leak [14, 15]. Second, memory leaks cannot be easily
handled by general bug-fixing approaches, as we cannot easily
specify the condition of “no leak” as an assertion or a test case.
Third, the “no leak” condition is general. We can build it into
our approach without relying on user-defined test cases and
assertions. Fourth, the problem of fixing memory leaks takes
a much simpler form than fixing general bugs, as the main
task is to find a suitable location to insert the deallocation
statement.

To understand the difficulty of fixing a memory leak, let us
take a look at an example program in Fig. 1. This is a contrived
example mimicking recurring leak patterns we found in real C
programs. Procedure check_records checks whether there is
any bad record in a large file, and the caller could either check
all records, or specify a search condition to check only part of
records. In this example, both get_next and search_for_next

will allocate and return a heap structure, which is expected to
be freed at line 12. However, the execution may break out the
loop at line 10, causing a memory leak.

Many existing detection approaches report only the alloca-
tion that may be leaked, which may be far from the place
where the leak occurs. In this example, the leaked allocation
will be inside the procedures get_next and search_for_next,
where the actual leak occurs in another procedure. Fastcheck
[9] is a detection approach that gives a path where the
memory is leaked. This noticeably reduces the search space for
identifying the leak, but it is still difficult to correctly fix the
leak. To fix the leak, we have to insert a deallocation statement
satisfying the following conditions. (1) In any execution, the
memory chunk has to be allocated before the deallocation. (2)



There is no double free: no other deallocation will free this
memory chunk. (3) The memory chunk will not be used after
the deallocation. The developer needs to have a comprehensive
understanding of the code to find a suitable location and a
suitable pointer to be freed. In this example, if the developer
chooses to insert a deallocation of p before line 10, s/he has
to look into the procedure get_next and search_for_next to
make sure that they return allocated memory chunks in all
cases. Also, s/he has to ensure that the code after the loop has
no deallocation or references to p. If p is passed out the current
procedure, the caller procedure should also be examined.

In our approach we try to ensure that all the fixes we
generate satisfy the above three conditions, collectively known
as the safety of fixes. We argue that safety is essential here
because, if an approach cannot guarantee the safety of the
fixes, developers still have to manually review all fixes to
identify faulty fixes, and arguably this review process would
not be noticeably easier than directly fixing the leaks, because
the developers still have to understand the logics of the code.
On the other hand, if the safety is guaranteed, the developers
could simply run the approach and trust the fixed code.

It is not easy to meet the goal above, as the design of the
approach faces several challenging problems, namely inter-
procedural leaks, global variables, leaks of multiple allocation-
s, and loops, which will be discussed in detail in Section II.
Furthermore, we cannot rely on the techniques in existing
detecting approaches to deal with these challenges because, as
far as we are aware, all existing detection approaches report
false positives.

Since leak detection is strongly interrelated with pointer
analysis, existing leak detection approaches often build their
approaches as a special pointer analysis process [9, 12].
Recently, there are significant improvements on the efficiency
of pointer analysis [16, 17, 18], so it makes sense to reuse
existing pointer analysis algorithms as black boxes. An im-
portant design choice is that we treat pointer analysis as an
independent component in our approach, so that we can easily
reuse different pointer analysis algorithms. This design choice
also greatly simplifies our approach, as many complexities
are transferred to pointer analysis. We currently use DSA
[16], an inter-procedural, flow-insensitive, context-sensitive
with heap cloning, field-sensitive, unification-based, and SSA-
based pointer analysis in our implementation. Nevertheless,
our approach is not specific to a particular pointer analysis
implementation. Pointer analyses of different sensitivities can
be used to increase the precision of the analysis or to improve
the analysis speed.

The main contributions of this paper are summarized as
follows:

• The first characterization of the problem of memory-leak
fixing in C programs, including three conditions for safe
fixes.

• A novel approach to automatically detecting and fixing
leaks in C programs, ensuring the safety of the fixes and
handling various challenging cases.

• An implementation of our approach, and a non-trivial em-
pirical study on SPEC2000 to evaluate the performance
of the tool, which shows promising results.

The rest of the paper is organized as the follows. Sec-
tion II defines the problem of memory-leak fixing, highlights
challenges, and describes the basic idea of our approach.
Section III presents the details of our approach. Section IV
presents the implementation of our approach. Section V
presents the evaluation of our tool, LeakFix. Section VI
discusses further issues for memory-leak fixing. Section VII
reviews existing approaches to handling memory leaks and
automatic bug fixing. Section VIII concludes the paper.

II. APPROACH OVERVIEW

A. Problem Definition

There are many ways to modify the code to fix memory
leaks. To minimize the disruption to the user code logic, we
focus on inserting only one free(exp) statement, where exp
is an expression that evaluates to a pointer. The safety of such
a fix is defined below.

Definition 1. [Safe fixes] A safe memory leak fix is an inser-
tion of a deallocation statement s into the program such that
the following three conditions are satisfied for any execution
path where s is executed.

1) A memory chunk c is allocated before the execution of
s, which releases c;

2) there is no other deallocation statement that releases c;
3) there is no use of c after the execution of s, i.e., c is

dead at the insertion point.

Besides safety, a further requirement is that we should insert
the deallocation statement as early as possible, so that the
memory chunks are deallocated as soon as we do not need
them.

B. Basic Idea

We first outline the basic idea of our approach, which will be
refined and improved when we discuss challenging problems
in the next sub section.

As we cannot rely on existing approaches to detecting
memory leaks, our approach tries to identify and fix memory
leaks at the same time. For each memory allocation statement
in the code, we check whether there is any leak on some path,
and insert a deallocation statement to fix the leak.

Before we detect and fix the leaks, we first perform pointer
analysis on the whole program. The pointer analysis we per-
form is an inter-procedural, flow-insensitive, context-sensitive
with heap cloning, field-sensitive, unification-based, and SSA-
based pointer analysis, so that we get an SSA-based points-
to graph for each procedure. Each node in a points-to graph
represents a memory object, and each edge in a points-to graph
represents the points-to relations between the objects.

As a memory chunk may be allocated in one procedure
and used in various other procedures, the first step is to
decide, given a memory allocation, in which procedure we
should check and fix its leak. Based on memory usage, we



could identify three types of procedures related to a memory
allocation m:
• Alloc procedures. This type of procedures may pass to

its caller a newly allocated memory chunk.
• Use procedures. This type of procedures may access a

memory chunk, directly or indirectly.
• Dealloc procedures. This type of procedure may free a

memory chunk, directly or indirectly.
A procedure can belong to multiple types, or none, if the

procedure is not related to the memory allocation. To ensure
safety of fixes, we require that our identification covers all
possible use procedures and dealloc procedures. In our running
example, search_for_next and get_next are alloc proce-
dures, and is_broken is a use procedure for both allocations.
Note free is a special procedure for recognizing deallocations,
and is not used for procedure type identification.

After we identify these procedures, we could identify and fix
the leaks of m in the procedure which calls an alloc procedure
of m but itself is not an alloc procedure of m. This is based
on Xie and Aiken’s rule [8]: any allocation in a procedure P
that does not escape from P is leaked if it is not deallocated
in P . In our example, we should check and fix leaks in the
procedure check_records. The three types of procedures can
be identified by analyzing the points-to graphs.

When we have identified these types, we could detect and
fix leaks within the procedure. We do this by abstracting the
program into an abstract control flow graph (CFG), as shown
in Fig. 2(a). In this abstract control flow graph, we keep only
information related to memory usage and deallocation. We
recognize statements in the same way as procedures and mark
nodes as Alloc, Use and/or Dealloc on the nodes. Identifiers
m1 and m2 represent memory allocations to be analyzed within
this procedure. Same as procedures, we require that the set of
use and dealloc nodes to be complete. Note that all dealloc
nodes are naturally use nodes, and we do not show the use
notation for simplicity.

With this graph, our task is to find an edge e where, given
an allocated memory chunk m, (1) we can construct at e
an expression exp that always evaluates to a pointer to m,
(2) none of the paths covering e contains Dealloc(m), and
(3) none of the outgoing paths from e contains Use(m). If
such an edge exists, we can insert a free(exp) statement at
e. We refer to the three conditions as basic edge conditions.
The basic edge conditions correspond to the three conditions
of safe fixes. Regarding the first condition, if there is an
expression exp that always returns m, m must have been
allocated before reaching this edge in all execution paths.
The rest two conditions is guaranteed because we require
completeness of use and dealloc nodes.

The three conditions can be checked using standard tech-
niques. The first condition can be checked based on points-to
graphs. The rest two conditions can be checked with dataflow
analyses.

However, it is not easy to realize this basic idea. There are
several challenging problems that need to be coped with, as
described in the next section.
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(b) Extracted loop

(The numbers in the nodes are the respective line numbers in the original
program. The memory chunk returned by get_next is denoted as m1 and
the memory chunk returned by search_for_next is denoted as m2.)

Fig. 2. Abstract CFGs of check_records

C. Challenging Problems and Solutions

1) Pointer Analysis Enhancements: To check basic edge
conditions, we need to identify an expression that always
evaluates to a pointer to m. In other words, we need to
answer must-alias queries. However, modern pointer analysis
algorithms are all points-to analysis based on singe static
assignment form (SSA) [18, 16, 17, 19], which builds SSA-
based points-to graphs. We cannot directly apply these pointer
analysis algorithms to our approach, and must perform several
enhancements as follows:

First, in SSA, each programmer-specified use of a variable
is reached by exactly one assignment of that variable, and
the program contains φ functions that distinguish values
of variables transmitted on distinct incoming control flow
edges [20]. In SSA-based pointer analysis, the program is first
translated to SSA form and the points-to graphs contain only
the information about the SSA program. Unlike leak detection
approaches [11, 12], which could directly work on converted
SSA program, our approach needs to modify the source code
to fix leaks, and cannot work on the converted SSA program.

To utilize the modern SSA-based pointer analysis algorithm-
s, we modify the SSA conversion algorithm and record a
traceability links between original variables and SSA variables
during the conversion. More concretely, the traceability links
record the corresponding SSA variables of the original vari-
ables at each node program point. With this traceability links,
we can map an SSA-based points-to graph to a points-to graph
on the original program. Note that this conversion utilize the
partial flow-sensitivity brought by the SSA form. Though the
original analysis is flow-insensitive, the converted points-to
graphs are different at each CFG node.

Second, to obtain a pointer that always points to m at a
certain program point, we can identify whether there is a
node in the points-to graph that has only one successor m.
However, modern pointer analysis algorithms are usually only



sound with respect to valid pointers. In other words, besides
pointing to its successors on the points-to graph, a pointer may
also be uninitialized, or be null. If we consider the possibility
of being uninitialized or null, we can never identify a pointer
only pointing to m.

To deal with the problem of uninitialized values, we perform
a context-insensitive inter-procedural dataflow analysis to find
which variables are definitely initialized. In intra-procedure
analysis, the lattice elements are sets of pointers in the program
that definitely have been initialized. A pointer may be a
global variable, a local variable and a set of heap variable.
A global variable is represented by its name. A local variable
is represented by its procedure name and its name. A heap
variable is represented by its allocation statement and, if
the allocated memory chunk is a struct, a sequence of field
names. The meet operator is set intersection. The transfer
functions adds a pointer p to the set when an assignment
statement lval=rval is executed, where lval can be deter-
mined to be definitely p using the current points-to graph
and the known initialized variables. It is easy to show the
transfer functions are all monotone because variables are only
added. The analysis is performed forwardly. We extend the
intra-procedural analysis into inter-procedural using standard
bottom-up-summary-based approach [21].

The null value is more interesting. According to the C
standard, free(null) has no effect, and thus we could safely
ignore the fact that a pointer may point to null. The downside
of this strategy is that we may add useless deallocation
statement. When p is always null, a statement of free(p)
is useless. As a matter of fact, we find this strategy leads
to a significant number of useless deallocations to be added,
because in the code the following pattern is very common.

p= m a l lo c ( ) ; i f ( p != n u l l ) { . . . ; f r e e ( p ) ; }

Unless the pointer analysis is path sensitive, else free(p);

will be appended to above program, but this deallocation is
useless.

To avoid too many useless deallocations, we perform a
simple refinement to the points-to graphs. We recognize
basic null tests in conditional statements such as if(exp),
if(exp==null), or if(exp!=0). If we can definitely determine
exp evaluates to a node n in the points graph, we remove
all outgoing edges of n in the points-to graphs on the corre-
sponding branch where exp should be null. As will be shown
later, this refinement leads to the insertion of zero useless
deallocation statement in our evaluation.

2) Procedure Identification: It is not easy to build an
algorithm for identifying these procedures. First, there are
many ways for a procedure to pass a pointer to a caller,
e.g., via return value, pointers to pointers, heap structures,
and global variables. The algorithm has to consider all of
them. Second, with pointers, a program may access allocated
memory chunks indirectly. For example, a program may take
a parameter p, but read p->p1->p2. Thus, we cannot only
track how pointers are passed between procedures, but have
to track how a program uses the pointers. Third, the types of

a procedure may depends on the types of other procedures.
For example, procedure a calls procedure b, where b uses an
allocated chunk m1, then a is also a use procedure of m1

because of calling b. The algorithm must identify the types
for all procedures in a convergent and terminating manner. It
is not easy to meet all the conditions above. As a matter of
fact, though some detection algorithms are locally sound [22],
no detection algorithm is sound on the inter-procedural level
as far as we know.

To address these issues, we build our procedure identifica-
tion algorithm on top of points-to graphs. This design choice
leads to a simple algorithm, as we transfer the complex part
of the analysis to pointer analysis. More concretely, we only
needs to build flow-insensitive procedure summaries of four
sets, which record which nodes on the points-to graph are
allocated, escaped, used, and freed in the current procedure.
From the summaries we could easily identify the types of a
procedure with respect to a particular allocation.

Our summaries are context-insensitive, but we could easily
extend the summaries to be context-sensitive using the stan-
dard cloning technique.

3) Global Variables: To ensure safety of fixes, when a
procedure f assigns an allocated memory chunk to a global
variable, we have to consider f as an alloc procedure because
the memory chunk escapes from f. However, if this memory
chunk is not freed anywhere, all callers of f will also be
identified as alloc procedures, and so do their callers, etc. As
a result, we can only fix this leak within the main procedure.
Though this fix is technically safe, it may not be efficient
because the deallocation may be too far from its last use. This
problem does not exist in leak detection algorithms [9, 12], as
a detection in main still detects the leak.

To overcome this problem, given a procedure that passes
an allocated memory chunk via global variables, we identify
it as an alloc procedure only when any of its direct and indirect
callers will use the returned memory chunk. When none of the
callers uses the escaped memory chunk, the memory chunk is
effectively not escaped and it is safe for us to free it within
the procedure.

We perform this identification on the call graph and check
whether any caller can reach a use/dealloc procedure on the
call graph. More concretely, we first identify all use and
dealloc procedures and then examine the call graph. Let p
be the procedure that passes an allocated chunk via global
variables. We identify p as alloc only when there exists another
procedure c and u, where u is a use or dealloc procedure, u
and p are both reachable from c on the call graph, and there
is at least one path from c to u that does not go through p.

4) Multiple Allocations: Existing techniques on memory
leaks adopt a per-allocation basis: given one allocation state-
ment, we check whether this allocated memory chunk leaks.
Our basic approach follows the same basis.

However, although the per-allocation basis is enough to
detect leaks, it is not enough to fix leaks. In our running
example, the leak should be fixed before line 10, but our
basic approach cannot fix it because p points to both allocated



chunks and we cannot find an expression that always points
to one allocated memory chunk. Based on our experience, this
kind of code pattern, where two allocations are assigned to the
same pointer at different paths and used as one, is common
in C programs.

To cope with this problem, instead of considering one
allocation at one time in basic edge conditions, we consider
a set of allocations together, called set-based edge conditions.
More concretely, we try to find a set of allocated memory
chunks M and an edge e, where (1) there is an expression
exp at e where in any execution, the memory chunk pointed
by exp is a member of M , (2) none of the path covering
e contains dealloc(m) for any m ∈ M , and (3) none of
the outgoing path from e contains use(m) for any m ∈ M .
The safety of the three conditions can be reasoned in a way
similar to basic edge conditions. Given any execution path, the
memory chunk pointed by exp at e must have been allocated
based on the first condition, and there is no use after e and
no deallocation on the whole path according to the latter two
conditions.

5) Loops: With set-based edge conditions, we are still not
able to fix the leak in our running example. There exists
paths containing both the node of Dealloc(m1, m2) at line
12 as well as the edge between line 9 and 14, and we
have to conservatively determine that the edge is not suitable
for leak fixing. This is because our abstraction (as well as
state-of-art pointer analysis techniques) distinguishes memory
allocations by their code locations, and cannot distinguish
memory allocations executed in different iterations in a loop.

Handling loops is in general a difficult problem in static
analysis. However, in the case of memory leaks, it is rare for
a program to allocate a memory chunk in one iteration and use
it in another iteration. Most programs, as well as our running
example, allocate and use a memory chunk in one iteration,
and this memory chunk should also be deallocated in the same
iteration. As a result, we can treat the body of the loop as an
independent procedure and check within the procedure. Many
existing approaches on leaks [23, 9, 12] also only track leaks
in one iteration, though the techniques are somewhat different.

Fig. 2(b) shows the extract procedure from the body of the
loop in our running example. Any edge connecting to the loop
on the original CFG is transfered as an edge from the entry. All
statements that breaks out of the loop, such as break, as well
as all statements that start a new iteration, such as continue or
the last statement in the loop body, are considered as control
transfer to the exit. The points-to graph for each CFG node is
reused from the original CFG.

It is important to ensure safety when we treat the body of
the loop as an independent procedure. Given a node labelled
as Alloc(m) in the extracted procedure, we check whether
any memory chunk allocated by m within an iteration would
escape this iteration. If so, all memory chunks must be used
within the iteration, and thus it is safe to treat the loop body
as an independent procedure for m. The concrete algorithm is
shown in Algorithm 1.

Algorithm 1 Test whether the leaks of allocation m can be
checked in the extracted loop procedure

if Any node outside the loop is labelled as Alloc(m) then
return False

Perform liveness analysis on the original procedure
ne ← the exit node in the extracted CFG
for each predecessor n of ne do
n′ ← the corresponding node of n in the original CFG
g ← the points-to graph at n′

for each variable v that can reach m on g do
if v is live after n′ then

return False
return True

III. APPROACH DETAILS

As described in the previous section, our approach consists
of the following stages.

1) Perform pointer analysis and build the mapping between
SSA variables and variables in the original program.

2) Build method summaries, and identify three types of
procedures for each allocation.

3) Within each procedure that needs to be analyzed, check
and fix leaks using set-based edge conditions.

In this section we describe the details of the three stages.

A. Pointer Analysis

In this stage we perform the pointer analysis, as well as all
enhancements described in Section II-C1. The results of this
step is an SSA-based points-to graph for each procedure, as
well as converted points-to graphs of the original program for
each CFG node.

We assume each node on a points-to graph can be mapped to
a set of code elements. The code elements include global vari-
ables, local variables, and allocation statements. An allocation
statement stands for all memory chunks that may be allocated
by this statement. The edges on the graph are labelled with
the field names, and the name is “*” for pointer dereference.

It is also useful to have the inverse mapping: given an
expression e, we would like to find all possible nodes this
expressions could evaluate to. The follows show the main
components of defining such a function nodes. In the defi-
nition, function var to node(v) finds a node for a variable
v. Function succ(n, f) return a set of successors of node n
where the edges are labelled with f . If f is omitted, it returns
all successors of n.

nodes(var) = {var to node(var)}
nodes(e.f) =

⋃
n∈nodes(e){succ(n, f)}

nodes(*e) =
⋃

n∈nodes(e){succ(n, ∗)}
nodes(e1[e2]) =

⋃
n∈nodes(e1){succ(n)}

B. Procedure Identification

In this stage, we build summaries for procedures and
identify their types with respect to heap memory usage. We
also identify and annotate statements with respect to heap
memory usage at this stage.



A summary for procedure p consists of four sets of nodes
on the points-to graph of the procedure. The first, SAllocp, is
a complete set of nodes that are possibly allocated in p. The
second, SUsep is a complete set of nodes that are possibly
read in p. The third, SDeallocp is a complete set of nodes
that are possibly deallocated in p. The fourth, SEscapep is a
complete set of nodes that are possibly escaped (i.e., passed
to its caller) from the current procedure.

We build the first three sets in two steps. First, we perfor-
m intra-procedural flow-insensitive analysis to compute the
sets locally for each procedure. Second, we perform inter-
procedural analysis by updating the sets along the call graph.
In the intra-procedural analysis, SAllocp is constructed by
adding all nodes on the points-to graph of p that correspond to
allocation statements in procedure p. Set SUsep is constructed
by a union of nodes(exp) for each exp where exp is either a
top-level expression used in procedure p or a sub expression of
a top-level expression. Set SDeallocp is constructed by a union
of nodes(exp) for each free(exp) statement in procedure p.

In the second step, for each procedure on call graph, we
update its three sets by merging them with sets in its successor
nodes by union, as follows.

Xp := (
⋃

q∈succ(p)Xq) ∪Xp,

where X is SAlloc, SUse, or SDealloc.

We update all summaries iteratively until we reach a fixed
point.

It is easy to reason the termination and convergence of the
algorithm using the monotone framework [24]. Sets of nodes
with the union operator form a lattice of finite height. The
transfer functions for the second step are just the id function,
and thus are monotone.

After we have built the first three sets, we proceed with
SEscapep. We check each allocation a ∈ SAllocp to see
whether it should be added to SEscapep. For any procedure q
who is a predecessor of p on the call graph, i.e., q calls p, we
check whether a is in the points-to graph of q. If so, a must
have been escaped from p and thus we add a to SEscapep.
However, if a has only one predecessor which is a global
variable in the points-to graph of q, we first check the use of
a as described in Section II-C3. If a is not used in any caller,
we do not added it to SEscapep.

Given the procedure summaries, it is easy to identify the
procedure types. If there is a node m where m ∈ SAllocp ∩
SEscapep, we mark p as Alloc(m). If there is a node m that
corresponds to allocation statement and m ∈ SUsep, we mark
p as Use(m). Similarly, if there is a node m that corresponds
to allocation statement and m ∈ SDeallocp, we mark p as
Dealloc(m).

During the summary building, we also identify the state-
ments related to the use or deallocation of heap memory.
When we add a node m to SUsep during the analysis of
an expression e, we label the CFG node that containing e as
Use(m) if m corresponds to an allocation statement. Similarly,
we label the corresponding CFG node as Dealloc(m) when
we add a heap node m to SDeallocp during the local analysis.

C. Leak Detection and Fix

In this stage, we perform intra-procedural analysis to detect
and fix leaks. For each procedure p, we first determine what
allocations should be checked in p. An allocation m should be
checked in p if (1) a statement in p is labelled as Alloc(m)

or a successor of p on the call graph is labelled as Alloc(m),
and (2) p is not labelled as Alloc(m). We denote the set of
allocations that should be checked in procedure p as Mp.

Next, we extract loops as independent procedures as de-
scribed in Section II-C. For each extracted loop procedure
l, we identify the set of allocations that can be fixed in l,
denoted as Ml. Then we update Mp by subtracting Ml, i.e.,
Mp :=Mp −Ml.

After this step, we have a set of procedures, either original
or extracted, and sets of allocations that should be checked in
each procedure. Next we perform a series of analyses to fix
leaks according to set-based edge conditions. Basically, we
shall perform the following analyses:

1) A forward dataflow analysis to find what deallocations
may have been reached before or at each CFG node (2nd
condition).

2) A backward dataflow analysis to find what deallocations
and uses of allocations may be reached after or at each
CFG node (3rd condition).

3) A traversal on the edges to identify the variables that
only points to the allocations that can be deallocated at
each CFG edge (1st condition).

4) A forward, greedy algorithm that aims to select the
earliest points to insert deallocations.

In the following we should illustrate the four analyses one by
one.

Analysis 1. This is a forward dataflow analysis consists of
the following components.

Data at each CFG node n: Df n, a set of allocations that may
have been deallocated before or at the current CFG node

Meet operator: set union
Transfer function at node n: f1n(Df ) ={

Df ∪ {m1, . . . ,mk} n labelled as Dealloc(m1, . . . ,mk)

Df otherwise

It is easy to reason that these components conform to the
monotone framework [24]: sets with union form a lattice, the
number of allocations is finite, and the transfer functions are
in the standard GEN-KILL form.

Analysis 2. This is a backward dataflow analysis consists of
the following components.



Data at each node n: (Dbn, Ud). Dbn is a set of allocations
that may be deallocated after or at the current CFG node,
and Ud is a set of allocations that may be referenced after
or at the current CFG node.

Meet operator: set union of each component
Transfer function at node n:
f2n((Db, U)) = (f1n(Db), f2′n(U)),
where f2′n(U) ={

U ∪ {m1, . . . ,mk} n labelled as Use(m1, . . . ,mk)

U otherwise

It is also easy to reason that these components conform to
the monotone framework: products of lattices are still lattices,
and products of monotone functions are still monotone.

Analysis 3. After the first two analyses, the allocations that we
can free at each edge e is Ae =Mp−Df e.from−Dbe.to−Ue.to.
We use e.from to denote head of e and use e.to to denote
the tail of e. Now the task is to find expressions exp where
nodes(exp) ⊆ Ae at the points-to graph of e.from . To achieve
this, we first locate all such nodes n, where succ(n) ⊆ Ae.
Next we locate a path from any local/global variable to n
through depth search in the reverse direction. Finally, we
convert the path to an expression exp. Since the points-to
graph is unification-based, we know that nodes(exp) ⊆ Ae.
We find all such expressions and denote the result set of
expressions at edge e as Expe.

Analysis 4. After Analysis 3, we have a set of expressions
that we can deallocate at each edge. However, inserting a
deallocation at any edge will also add new dealloc labels to
the node, making some other deallocations unable to insert.
As a result, we need an algorithm that inserts all deallocations
in a systematic way.

The algorithm is shown in Algorithm 2. In the algorithm,
function outgoing/incoming returns the outgoing/incoming
edges of a node, and function sub returns all sub expressions of
an expression. This algorithm approaches in a way similar to
a forward dataflow analysis, though the data transfer happens
at edges rather than nodes. At each edge, we store two
elements: ToInserte is a sequence of expressions that should
be inserted as deallocations at this edge, and Freede is a
set allocations that have been freed by this node or previous
nodes. The algorithm traverses the control graph forwardly. At
each edge, we greedily select the expressions that deallocates
most allocations, and store in Freede the allocations this
expression frees. We need to be careful that the expression
only deallocates the allocations that have not been deallocated,
and any part of the expression has not been deallocated. The
edges are updated iteratively until we reach a fixed point.

This algorithm always terminates, as in every iteration we
decrease Freede. This algorithm may not always converge to
a globally optimal result, as we select only the local optimal
expression at each edge. However, this algorithm performs
well in practice as it is rare that we have to insert a large
number of deallocations in one procedure, and locally optimal
results leads to globally optimal results in most cases.

Algorithm 2 Select a set of deallocations at each edge.
ToVisit ← outgoing(entry)
for each e← ToVisit do
ToVisit ← ToVisit − {e}
OldFreede ← Freede

Freede ←
⋃

n∈incoming(e.from) Freede

ToInserte ← {}
while ∃exp ∈ Expe : nodes(exp) ⊆ (Ae − Freede) do
U ← {exp | nodes(exp) ⊆ (Ae − Freede)}
U ′← {x ∈ U | ∀s ∈ sub(x) : ¬(nodes(s) ⊆ Freede)
select exp ∈ U ′ where |nodes(exp)| is the largest
ToInserte.append({exp})
Freede ← Freede ∪ nodes(exp)

if OldFreede 6= Freede then
ToVisit ← ToVisit − outgoing(e.to)

Finally, we need to map the expressions in ToInserte at each
edge e back to the insertions of deallocations in code. This
requires some engineering efforts to deal with different cases.
Sometimes we may need to insert a missing else branch or
delicately choose an insertion point. Nevertheless, it is always
possible to map an insertion at the edge on the CFG graph
back into the code.

IV. IMPLEMENTATION

We have implemented our approach as an open source tool,
LeakFix1. Our implementation uses LLVM, and the pointer
analysis algorithm is DSA [16]. DSA is an inter-procedural
flow-insensitive SSA-based algorithm, and we chose DSA
because it is the most stable implementation that is available
on the newest version of LLVM.

The points-to graphs generated by DSA contain traceability
information that maps nodes to global variables. However,
the traceability information from nodes to local variables and
heap objects are not included in the graphs. To use the graphs
in our algorithms, we run an additional pass to recover the
information from the code. First, locally at each procedure, we
check all assignment statements to recover the local traceabil-
ity information for local variables and allocation statements.
Second, inter-procedurally on the call graph, we merge the
local information at each procedure by the parameters and
return values passed between procedures.

We integrate the implementation into an LLVM-based com-
piler and a linker, namely Clang and GNU gold linker with
LLVM plugin, respectively. In the compiling phase, we use
LLVM frontend Clang to compile each source code file into
an LLVM bitcode file, and record the traceability from source
code to its SSA form in bitcode files. In the linking phase,
while we use the GNU gold linker with LLVM plugin to link
all generated bitcode files together, we read the trace files and
perform the three analysis steps as described in Section III.

1available at http://sei.pku.edu.cn/%7gaoqing11/leakfix



V. EVALUATION

A. Research Questions

Our evaluation aims to answer the following research ques-
tions:

RQ1: How effective is our tool in fixing real-world memory
leaks?

RQ2: What are the execution time of our tool for memory-
leak fixing?

B. Evaluation Setup

We evaluated LeakFix on SPEC2000, which is widely used
as evaluation benchmarks by existing memory-leak detection
papers [22, 9, 10, 12]. We chose SPEC2000 because we want-
ed to compare our results with these memory-leak detection
approaches. All our experiments were executed on Ubuntu
13.04 virtual machine with 3GB memory, and the host is
running a 2.66GHz Intel Core5 processor with 8GB memory
on Windows 7.

Table I shows information of SPEC2000 programs sorted by
program size, taken from an existing paper [9]. The second
column shows program size, the third column shows the
number of functions, and the last column shows the number
of allocation statements in each program.

TABLE I
PROGRAM INFORMATION

Program Size (Kloc) #Func #Allocation
art 1.3 44 11

equake 1.5 45 29
mcf 1.9 44 3

bzip2 4.6 92 10
gzip 7.8 128 5

parser 10.9 342 1
ammp 13.3 197 37

vpr 17.0 290 2
crafty 18.9 127 12
twolf 19.7 209 2
mesa 49.7 1124 67
vortex 52.7 941 8

perlbmk 58.2 1094 4
gap 59.5 872 2
gcc 205.8 2271 53

We count the number of fixes we inserted, and compare
them to the number of leaks detected by existing memory-leak
detection tools. Note that we may insert more than one fix for
one leak as the memory may be leaked from different paths.
We also manually check if there are useless fixes. During the
manual check, we try to identify any of the two cases where a
fix can be useless: (1) the deallocated expression is always a
null pointer, and (2) the inserted deallocation is on a dead path.
These conditions usually can be easily falsified by seeking for
counter-examples.

C. Effectiveness of LeakFix

Table II shows the reported leaks of existing memory-
leak detection tools (i.e., LC [22], Fastcheck [9], SPARROW
[10], and SABER [12]). The numbers outside parentheses
correspond to detected real leaks, while the numbers inside
parentheses correspond to false positives. All the numbers are
taken from the corresponding papers.

Table III shows the fixed leaks in our tool and the maximum
detected memory leaks among memory-leak detection tools.
Because some tools are not publicly available, we only use the
maximum numbers reported in the corresponding papers. The
second column shows the numbers of allocations for which
LeakFix generates at least one fix. The third column shows
the maximum numbers of detected memory leaks among the
detection tools. The fourth column presents the percentages of
leaks that our approach provides fixes, the fifth column shows
the number of fixes our approach inserted, and the last column
shows the number of useless fixes.

TABLE II
LEAKS REPORTED BY DETECTION TOOLS

Program LC Fastcheck SPARROW SABER
art 1(0) 1(0) 1(0) 1(0)

equake 0(0) 0(0) 0(0) 0(0)
mcf 0(0) 0(0) 0(0) 0(0)

bzip2 1(1) 0(0) 1(0) 1(0)
gzip 1(2) 0(0) 1(4) 1(0)

parser 0(0) 0(0) 0(0) 0(0)
ammp 20(4) 20(0) 20(0) 20(0)

vpr 0(0) 0(1) 0(9) 0(3)
crafty 0(0) 0(0) 0(0) 0(0)
twolf 0(0) 2(0) 5(0) 5(0)
mesa 2(0) 0(2) 9(0) 7(4)
vortex 0(26) 0(0) 0(1) 0(4)

perlbmk 1(0) 1(3) N/A1 8(4)
gap 0(1) 0(0) 0(0) 0(0)
gcc N/A1 35(2) 44(1) 40(5)
total 26(34) 59(8) 81(15) 83(20)

1Data is not available in the corresponding paper.

TABLE III
FIXED LEAKS AMONG MAXIMUM DETECTED LEAKS

Program #Fixed #Maximum
Detected Percentage(%) #Fixes #Useless

Fixes
art 0 1 0 0 0

equake 0 0 N/A 0 0
mcf 0 0 N/A 0 0

bzip2 1 1 100 1 0
gzip 1 1 100 1 0

parser 0 0 N/A 0 0
ammp 20 20 100 36 0

vpr 0 0 N/A 0 0
crafty 0 0 N/A 0 0
twolf 0 5 0 0 0
mesa 0 9 0 0 0
vortex 0 0 N/A 0 0

perlbmk 1 8 13 1 0
gap 0 0 N/A 0 0
gcc 2 44 5 2 0
total 25 89 28 41 0

From Table III, we make the following observations:
First, LeakFix can successfully generate fixes for a substan-

tial number of allocations with leaks in real-world programs.
In total, LeakFix generates 41 fixes on 25 leaks, accounting
for 28% leaks among the maximum detected leaks. We find
that there is no useless fix, i.e., there is no dead code where
leaks occur.

Second, in some programs, LeakFix is able to generate fixes
for all the detected leaks, while in programs like gcc, LeakFix
did not generate many fixes.

Third, LeakFix can generate more than one fixes for a
malloc node. On average, we generate 1.6 fixes for one leak.

We further look into the fixed leaks to understand what kind
of leaks are common in practice and what kind of leaks we
can fix. Many fixed bugs are in the following code pattern:
1 p = m a l lo c ( ) ;



2 i f ( . . . ) {
3 . . .
4 re turn ; / / l e a k here
5 }
6 . . .
7 f r e e ( p ) ;

This indicates that conditional leaks are common in real-
world programs and our approach is effective in fixing these
leaks.

We also look into the unfixed leaks to identify why our
approach is not able to fix these leaks. We found two main
reasons. First, many leaks in gcc are in following code pattern:
1 char∗ p=” . . ”
2 i f ( . . ) {
3 p= m a l lo c ( ) ;
4 . . .
5 }
6 use ( p ) ; / / l e a k here

To fix the leak, we have to insert a conditional deallocation
as p does not always point to a heap object, which is
not considered in our approach. Second, many leaks in the
programs are not fixed because of the flow-insensitivity of the
pointer analysis algorithm we used. If we replace the pointer
analysis with a flow-sensitive one, we should be able to fix
these leaks.

D. Execution Time of LeakFix

Table IV shows the execution time of LeakFix. Since our
approach is built into a compiling and linking process, we
report the time used by both the original compiler and the
linker in the second column. The third column shows pointer
analysis time, and the fourth column shows the time spent
in fixing. The fifth column shows the total time spent in the
compiler, the linker and LeakFix. The last column shows the
percentage of the time spent by LeakFix among the total time.

TABLE IV
TIME CONSUMPTION

Program Compiling and
Linking (sec)

LeakFix (sec) Total
(sec) Percentage(%)Pointer

Analysis
Fix

Analysis
art 0.20 0.02 0.01 0.23 13.0

equake 0.21 0.01 0.02 0.24 12.5
mcf 1.19 0.02 0.01 1.22 2.5

bzip2 0.36 0.03 0.02 0.41 12.2
gzip 1.31 0.04 0.04 1.39 5.8

parser 1.68 0.18 0.07 1.93 13.0
ammp 2.98 0.12 0.37 3.47 14.1

vpr 2.51 0.20 0.31 3.02 16.9
crafty 3.53 0.16 0.23 3.92 9.9
twolf 6.22 0.27 0.20 6.69 7.0
mesa 9.36 5.36 5.97 20.69 54.8
vortex 9.00 0.94 0.83 10.77 16.4

perlbmk 9.50 18.20 39.20 66.90 85.8
gap 6.03 7.36 22.36 35.75 83.1
gcc 10.99 31.76 95.81 142.99 89.2

From Table IV, we make the following observations.
First, the overall time is acceptable. The smallest program,

art, is 1.3kloc and costs 0.23s. The largest program, gcc with
about 206kloc, costs about 143s.

Second, the percentage of LeakFix time lies in 5%-20% in
most cases. However, in large programs such as gap and gcc
the percentage is as high as 90%. The reason may be that
compiling and linking is in linear time, while our algorithm
requires traversing the points-to graphs. When program size
becomes larger, the call graph and points-to graph may be

more complicated. Also, the percentage varies by different pro-
grams. This is possibly due to different number of allocations
and functions in different programs.

Third, the percentage of pointer analysis time among total
LeakFix time is around 20%-70%. In the largest three pro-
grams (perlbmk, gap, and gcc), the ratio is around 30%. Since
pointer analysis is not the main bottleneck of performance, we
could possibly use more accurate pointer analysis algorithms
to enhance the precision of our approach.

In summary, the execution time of LeakFix is acceptable,
and LeakFix is scalable for large applications.

E. Threats to Validity

1) Internal Validity: The main threat to internal validity is
the possible faults in the implementation of our approach.
To reduce this threat, four of the authors participated the
implementation, and the code is cross-reviewed and cross-
tested.

2) External Validity: The main threat to external validity
lies in the representativeness of the benchmark. To reduce
the threat, we chose SPEC2000, which is frequently used
for evaluating memory-leak detection approaches. To further
reduce the threat, we plan to include more subjects as future
work.

VI. DISCUSSION

First, though our approach is able to generate multiple fixes
for one leak, it does not guarantee that the generated fixes
fully fix this leak. As a result, our approach is best used
together with leak detection approaches, where leak detection
approaches can be used to detect whether there are unfixed
leaky paths for an allocation.

Second, our approach is built upon the result of pointer
analysis, so the precision of our approach is largely decided by
the pointer analysis. For example, in DSA, all pointer elements
in a pointer array are merged together, and therefore we cannot
free any individual elements in arrays. However, if we use
a more accurate pointer analysis that distinguishes different
elements in an array, we can free the elements safely.

Third, our approach handles leaks within one iteration of a
loop. As a result, we cannot handle the cases where one loop
allocates a set of objects (say, an array of heap objects) and
another loop releases them. However, while this code pattern
is common in object-oriented languages, it is not observed in
our experiment subjects. We suspect this is due to efficiency:
it is less efficient to allocate a set of objects and an array of
their pointers than to allocate a heap array of object, where the
latter is not possible in many object-oriented languages such
as Java.

Fourth, to ensure safety and reduce analysis time, our
approach is conservative in analyzing library functions. For
example, in the statement str = strcat(), we do not consider
str to be initialized because it increases time cost to analyze
each library function. To maintain high speed and increase
precision, we could build summaries 2 for library functions.

2Please refer to Tang et al. [25] for recent advances in summary building.



VII. RELATED WORK

General bug fixing. Recently there has been a lot of work
focusing on bug fixing. Several researchers [1, 2, 3] tried
to find automatic means to fix general types of bugs. These
approaches typically take a violated correctness condition,
modify the code and satisfy the condition. The correctness
condition comes from either test cases [2, 3] or assertions such
as pre-conditions and post-conditions [1]. However, both forms
of correctness conditions used in these approaches are usually
inadequate, and rarely cover the full space of correctness.
Moreover, it is difficult to specify the correctness condition
of fixing memory leaks as test cases or assertions.

Dedicated approaches for specific types of bugs also exist.
For example, Jin et al. proposed approaches [26, 27] to auto-
mate the whole process of fixing a wide variety of concurrency
bugs. However, none of the dedicated approaches within our
knowledge target memory leaks in C.

Fixing faults can be bad, and may introduce new bugs.
Gu et al. [28] formalize the bad fix problem, and define two
dimensions of a fix. The ”coverage” dimension measures the
extent to which the fix handles all triggering faults correctly,
while the ”disruption” dimension counts deviations from a
program’s intended behavior introduced by a fix. In our
work, we ensure the correctness of the fix, i.e., we avoid the
”disruption” dimension of a bad fix, while try to improve the
”coverage” dimension of fixes.

Static approaches to memory leaks. The main line of static
approaches is to detect leaks [7, 8, 29, 9, 10, 13, 11, 12, 30].
Most detection approaches report only the locations where the
leaked memory is allocated. As in many cases the allocation
and the deallocation are in quite distinct places, the developers
still need lots of efforts to fix the leak. Even in Fastcheck
[9], which reports leaky paths as well as the allocation,
this information is still not enough for memory-leak fixing.
Furthermore, all approaches within our knowledge report false
positives, making it difficult for developers to rely on these
approaches to automatically fix leaks.

The approaches closest to ours are compile-time dealloca-
tion for Java [23, 31, 32]. These approaches insert dedicated
deallocation statements into Java bytecode to reduce the num-
ber of references needed to be scanned by the garbage col-
lector, so as to enhance runtime performance. However, none
of these approaches can be easily migrated to C language due
to the following reasons. First, when inserting a deallocation
into a C program, we must ensure no double-free is caused,
where approaches on Java does not have this problem, and it is
also not easy to extend existing approaches to handle double-
free. For example, Free-me [23] uses live analysis to find the
place for deallocation, and live analysis fundamentally only
identifies uses of memory chunks but not whether they are
freed. Furthermore, Cherem and Rugina’s approach [31, 32]
strictly obeys the semantic of Java, reclaiming an object only
when all its references are lost. This will lead to inefficient
memory usage because an object may be referenced for a long
time without being used.

There is also research on automated resource management
for Java [33, 34]. CLOSER [33] inserts close() method
for resources that cannot be managed by garbage collector.
FACADE [34] is a framework for transforming the data path
of Big Data applications, and significantly reduce cost for
runtime memory management. Both approaches are not fully
automatic, relying on developers for annotation.

Dynamic approaches to memory leaks. The most widely-
used dynamic approach to handling memory leaks is garbage
collection [35, 36, 37, 38], which adds runtime overhead to
the program. There is also research on dynamic memory-
leak detection [39, 40, 41, 42, 43, 44, 45], which provides
the location of an allocation which will be leaked later.
However, as discussed before, this information alone is still
far away from fixing the leak. Approaches for dynamic repair
of memory leaks also exist [46, 47], but they fix memory leaks
at runtime, rather than creating patches for them.

Some researchers have realized the importance of fixing
the leaks and approach the problem from different angles.
LEAKPOINT [14] tries to provide information that is useful
in locating a fix: Instead of reporting only the allocation,
LEAKPOINT also reports the location where the reference to
the allocated memory is lost or last used in a dynamic path.
However, as fixing a leak requires us to consider all possi-
ble paths, this information is not sufficient to automatically
generate fixes. Rayside and Mendel [48] use object ownership
profiling to find and fix junk, a kind of memory where the
memory is still referenced but is never used. However, as the
name suggests, their approach only give statistic reports to
assist humans to fix the leaks, and is not designed for auto-
matic fixing. Xu et al. [15] propose a three-tier approach that
uses varying levels to allow programmers with little program
knowledge to find the root cause of memory leak quickly.
This work also cannot fix errors automatically. Furthermore,
all the above approaches rely on dynamic analysis, where our
approach is a static analysis.

VIII. CONCLUSION

This paper proposes a static approach to automatic memory-
leak fixing, while ensuring that fixes are safe. We show that
the safety of leak fixes can be formally specified, while an
approach inserting only safe fixes can be built upon sound
pointer analysis. We also show that different challenging
cases can be handled by integrating various techniques: inter-
procedural leaks and global variables by specialized procedure
summaries, loops by extracting loops as independent proce-
dures, and multiple allocations by set-based edge conditions.
The resulted approach fixed in total 29% of leaks in our
evaluation.

As our first attempt toward type-specific bug fixing, the
result is quite encouraging: the algorithm fixes a substantial
number of bugs that cannot be captured by general-purpose
bug-fixing approaches. This result indicates that the direction
of type-specific bug fixing is promising and worth future
investigation.
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